733 research outputs found

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy

    Effect of Flow on Caloric Curve for Finite Nuclei

    Full text link
    In a finite temperature Thomas-Fermi theory, we construct caloric curves for finite nuclei enclosed in a freeze-out volume few times the normal nuclear volume, with and without inclusion of flow. Without flow, the caloric curve indicates a smooth liquid-gas phase transition whereas with flow, the transition may be very sharp. We discuss these results in the context of two recent experiments, one for heavy symmetric system (Au + Au at 600A MeV) and the other for highly asymmetric system (Au + C at 1A GeV) where different behaviours in the caloric curves are seen.Comment: 11 pages revtex; 4 figs; version to appear in Phys. Rev. Let

    A ROBUST AND MODULAR MULTI-SENSOR FUSION APPROACH APPLIED TO MAV NAVIGATION

    Get PDF
    Abstract — It has been long known that fusing information from multiple sensors for robot navigation results in increased robustness and accuracy. However, accurate calibration of the sensor ensemble prior to deployment in the field as well as coping with sensor outages, different measurement rates and delays, render multi-sensor fusion a challenge. As a result, most often, systems do not exploit all the sensor information available in exchange for simplicity. For example, on a mission requiring transition of the robot from indoors to outdoors, it is the norm to ignore the Global Positioning System (GPS) signals which become freely available once outdoors and instead, rely only on sensor feeds (e.g., vision and laser) continuously available throughout the mission. Naturally, this comes at the expense of robustness and accuracy in real deployment. This paper presents a generic framework, dubbed Multi-Sensor-Fusion Extended Kalman Filter (MSF-EKF), able to process delayed, relative and absolute measurements from a theoretically unlimited number of different sensors and sensor types, allowing self-calibration of the sensor-suite. The modularity of MSF-EKF allows seamless handling of additional/lost sensor signals online during operation while employing an state buffering scheme augmented with Iterated EKF (IEKF) updates to allow for efficient re-linearization of the propagation to get near optimal linearlization points for both absolute and relative state updates. We demonstrate our approach in outdoor navigation experiments using a Micro Aerial Vehicle (MAV) equipped with a GPS receiver as well as visual, inertial, and pressure sensors. I

    Coincidence measurement of residues and light particles in the reaction 56Fe+p at 1 GeV per nucleon with SPALADIN

    Full text link
    The spallation of 56^{56}Fe in collisions with hydrogen at 1 A GeV has been studied in inverse kinematics with the large-aperture setup SPALADIN at GSI. Coincidences of residues with low-center-of-mass kinetic energy light particles and fragments have been measured allowing the decomposition of the total reaction cross-section into the different possible de-excitation channels. Detailed information on the evolution of these de-excitation channels with excitation energy has also been obtained. The comparison of the data with predictions of several de-excitation models coupled to the INCL4 intra-nuclear cascade model shows that only GEMINI can reasonably account for the bulk of collected results, indicating that in a light system with no compression and little angular momentum, multifragmentation might not be necessary to explain the data.Comment: 4 pages, 5 figures, revised version accepted in Phys. Rev. Let

    Breakup Conditions of Projectile Spectators from Dynamical Observables

    Full text link
    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75\hbar/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Effect of Conjugated Linoleic Acids on Nutritional Status and Lipid Metabolism in Rats Fed Linoleic-Acid-Deprived Diets

    Get PDF
    This study aims to investigate the effect of conjugated linoleic acid (CLA) on nutritional parameters and triacylglycerol (TAG) regulation in male Wistar rats fed linoleic acid (LA)-deprived (−LA) diets compared to LA-enriched (+LA) diets. In both +LA and −LA groups, CLA are incorporated into the tissues, showing higher levels in the adipose tissue. However, different metabolic and nutritional effects are observed depending on the LA status. CLA markedly reduces fat depots in the −LA group, associated with an increased lipoprotein lipase (LPL) and lipogenic enzyme activities as compensatory mechanisms. Moreover, CLA restores the hepatic TAG levels in −LA animals, associated with a normalized triacylglycerol-secretion rate (TAG-SR), an increased lipogenic enzyme activity and higher mRNA levels of fatty acid synthase. Serum TAG levels are not affected by CLA in the +LA group. However, in the −LA group, CLA decreases the TAG levels associated with a reduced TAG-SR and a higher adipose tissue LPL activity. Thus, the CLA effects on the nutritional parameters and TAG metabolism differs depending on the LA status. CLA causes certain beneficial biological and nutritional effects in LA-deprived but not in LA-enriched animals. Practical Applications: The approach by the authors involve growing animals in healthy physiological conditions fed with diets containing recommended levels of dietary fats, moderate amounts of commercial CLA mixture obtained from industrial synthesis (equimolecular amounts of 9c,11t- and 10t,12c-isomers), and unbalanced LA levels. These variables constitute a situation observed in the human population. The present study might contribute to understanding the role of CLA on nutritional parameters and TAG metabolism depending on the nutritional milieu. Conjugated linoleic acid effects on nutritional parameters and triacylglycerol metabolism in rats fed linoleic-acid-enriched and linoleic-acid-deprived diets are determined.Fil: Fariña, Ana Clara. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Ciencias Biológicas. Cátedra de Bromatología y Nutrición; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Lavandera, Jimena Veronica. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Ciencias Biológicas. Cátedra de Bromatología y Nutrición; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: González, Marcela Aída. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Ciencias Biológicas. Cátedra de Bromatología y Nutrición; ArgentinaFil: Bernal, Claudio Adrian. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Ciencias Biológicas. Cátedra de Bromatología y Nutrición; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentin

    Time Scales in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of p-alpha, d-alpha, and t-alpha from spectator decays following Au + Au collisions at 1000 AMeV have been measured with an highly efficient detector hodoscope. The constructed correlation functions indicate a moderate expansion and low breakup densities similar to assumptions made in statistical multifragmentation models. In agreement with a volume breakup rather short time scales were deduced employing directional cuts in proton-proton correlations. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.MnComment: 8 pages, with 5 included figures; To appear in the proceedings of the CRIS 2000 conference; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Pion radii in nonlocal chiral quark model

    Full text link
    The electromagnetic radius of the charged pion and the transition radius of the neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the contributions of vector mesons to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu--Jona-Lasinio model. The form-factor for the process gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in satisfactory agreement with experimental data.Comment: 7 pages, 7 figure
    corecore